Eigenvectors and controllability of non-Hermitian random matrices and directed graphs

نویسندگان

چکیده

We study the eigenvectors and eigenvalues of random matrices with iid entries. Let N be a matrix entries which have symmetric distribution. For each unit eigenvector v our main results provide small ball probability bound for linear combinations coordinates v. Our generalize works Meehan Nguyen [59] as well Touri second author [67, 68, 69] matrices. Along way, we an optimal estimate that has simple spectrum, improving recent result Ge [37]. techniques also allow us to establish analogous adjacency directed graph, application controllability properties network control systems on graphs.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

commuting and non -commuting graphs of finit groups

فرض کنیمg یک گروه غیر آبلی متناهی باشد . گراف جابجایی g که با نماد نمایش داده می شود ،گرافی است ساده با مجموعه رئوس که در آن دو راس با یک یال به هم وصل می شوند اگر و تنها اگر . مکمل گراف جابجایی g راگراف نا جابجایی g می نامیم.و با نماد نشان می دهیم. گرافهای جابجایی و ناجابجایی یک گروه متناهی ،اولین بار توسطاردوش1 مطرح گردید ،ولی در سالهای اخیر به طور مفصل در مورد بحث و بررسی قرار گرفتند . در ،م...

15 صفحه اول

Wigner surmise for Hermitian and non-Hermitian chiral random matrices.

We use the idea of a Wigner surmise to compute approximate distributions of the first eigenvalue in chiral random matrix theory, for both real and complex eigenvalues. Testing against known results for zero and maximal non-Hermiticity in the microscopic large- N limit, we find an excellent agreement valid for a small number of exact zero eigenvalues. Compact expressions are derived for real eig...

متن کامل

Correlations of eigenvectors for non-Hermitian random-matrix models.

We establish a general relation between the diagonal correlator of eigenvectors and the spectral Green's function for non-Hermitian random-matrix models in the large-N limit. We apply this result to a number of non-Hermitian random-matrix models and show that the outcome is in good agreement with numerical results.

متن کامل

Products of independent non-Hermitian random matrices

We consider the product of a finite number of non-Hermitian random matrices with i.i.d. centered entries of growing size. We assume that the entries have a finite moment of order bigger than two. We show that the empirical spectral distribution of the properly normalized product converges, almost surely, to a non-random, rotationally invariant distribution with compact support in the complex pl...

متن کامل

Quaternionic R transform and non-Hermitian random matrices.

Using the Cayley-Dickson construction we rephrase and review the non-Hermitian diagrammatic formalism [R. A. Janik, M. A. Nowak, G. Papp, and I. Zahed, Nucl. Phys. B 501, 603 (1997)], that generalizes the free probability calculus to asymptotically large non-Hermitian random matrices. The main object in this generalization is a quaternionic extension of the R transform which is a generating fun...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Electronic Journal of Probability

سال: 2021

ISSN: ['1083-6489']

DOI: https://doi.org/10.1214/21-ejp588